
sqlbox cvs-2008.11.03 User’s Guide

SQL-Based queue engine for Kannel

Renee Kluwen
Sqlbox Author

Chimit

rene.kluwen at chimit dot nl
http://www.chimit.nl/

Martin Conte
Standalone Version and Patches

reflejo at gmail dot com

Alejandro Guerrieri
Maintainer, Documentation and Patches

Magicom

aguerrieri at kannel dot org
http://www.blogalex.com/





sqlbox cvs-2008.11.03 User’s Guide : SQL-Based queue engine for Kannel
by Renee Kluwen, Martin Conte, and Alejandro Guerrieri

Abstract

This document describes how to install and use sqlbox, the SQL-Based queue engine for Kannel.

Revision History

Revision cvs- 2008.11.03



Table of Contents
1. Introduction............................................................................................................................................1

Overview ............................................................................................................................................1
Features ..............................................................................................................................................1
Requirements .....................................................................................................................................1

2. Installing sqlbox .....................................................................................................................................3
Getting the source code......................................................................................................................3
Finding the documentation.................................................................................................................3
Compiling sqlbox...............................................................................................................................3
Installing Sqlbox ................................................................................................................................4
Using pre-compiled binary packages .................................................................................................5

Installing Sqlbox from RPM packages.....................................................................................5
Installing Sqlbox from DEB packages .....................................................................................5

3. Using sqlbox ...........................................................................................................................................6
Configuring Sqlbox ............................................................................................................................6

Configuration file syntax ..........................................................................................................6
Inclusion of configuration files.................................................................................................7
Sqlbox configuration ................................................................................................................7

The DB Connection ...........................................................................................................................9
Database Connection Configuration.........................................................................................9
MySQL Storage......................................................................................................................10
PostgreSQL Storage ...............................................................................................................10

Running Sqlbox................................................................................................................................11
Starting the box.......................................................................................................................11
Command line options............................................................................................................11
Database Tables ......................................................................................................................12

Inserting MT messages by SQL.......................................................................................................12
Database Structure..................................................................................................................13
Example..................................................................................................................................19

4. Getting help and reporting bugs.........................................................................................................20
A. Upgrading notes ..................................................................................................................................21

Upgrading from different sqlbox versions .......................................................................................21

iv



List of Tables
3-1. Sqlbox Group Variables........................................................................................................................8
3-2. Sqlbox Database connection configuration variables...........................................................................9
3-3. Sqlbox Command Line Options .........................................................................................................11
3-4. Sqlbox Database structure ..................................................................................................................13

v



Chapter 1. Introduction

Sqlbox is a special Kannel box that sits between bearerbox and smsbox and uses a database queue to
store and forward messages.

Overview
Sqlbox behaves similar to other Kannel boxes and share a compatible configuration file format and
command line options.

It works between bearerbox and smsbox, intercept all messages and use a couple of database tables to
process messages.

Messages are queued on a configurable table (defaults to send_sms) and moved to another table
(defaults to sent_sms) afterwards.

You can also manually insert messages into the send_sms table and they will be sent and moved to the
sent_sms table as well. This allows for fast and easy injection of large amounts of messages into kannel.

Features

• Modular architecture: Easily integrates into Kannel infrastructure.

• Compatible configuration file format and command line arguments.

• Supports most Kannel features.

Requirements
sqlbox is being developed on Linux and OSX systems, and should be fairly easy to export to other
Unix-like systems. However, we don’t yet support other platforms, due to lack of time, although it should
be working without major problems on Windows (through Cygwin), Mac OSX, Solaris and FreeBSD.

sqlbox requires the following software environment:

• Kannel libraries (gwlib) installed.

• C compiler and libraries for ANSI C, with normal Unix extensions such as BSD sockets and related
tools. (GNU’s GCC tool-chain is recommended)

• GNU Make.

• An implementation of POSIX threads ( pthread.h ).

1



Chapter 1. Introduction

• DocBook processing tools: DocBook style-sheets, jade, jadetex, etc; see README , section
‘Documentation’, for more information (pre-formatted versions of the documentation are available,
and you can compile Sqlbox itself even without the documentation tools).

• GNU autoconf

2



Chapter 2. Installing sqlbox
This chapter explains how to build and install sqlbox from source or from a binary package. The goal of
this chapter is to get the module compiled and all the files in the correct places; the next chapter will
explain how to configure it.

Note: If you are upgrading from a previous version, please look at Appendix A for any important
information.

Getting the source code
The source code to Sqlbox is available for download at http://www.kannel.org/download.shtml . It is
available in various formats and you can choose to download either the latest release version or the daily
snapshot of the development source tree for the next release version, depending on whether you want to
use Sqlbox for production use or to participate in the development.

If you’re serious about development, you probably want to use CVS, the version control system used by
the Kannel project. This allows you to participate in Kannel development much more easily than by
downloading the current daily snapshot and integrating any changes you’ve made every day. CVS does
that for you. (See the Kannel web site for more information on how to use CVS.)

Finding the documentation
The documentation for Sqlbox consists of two parts:

1. User’s Guide , i.e., the one you’re reading at the moment.

2. The README and various other text files in the source tree.

You can also find general information on Kannel’s website (http://www.kannel.org) and information
about existing problems at our bugtracker (http://bugs.kannel.org) .

We intend to cover everything you need to install and use Sqlbox is in User’s Guide , but the guide is still
incomplete in this respect. The README is not supposed to be very important, nor contain much
information. Instead, it will just point at the other documentation.

Compiling sqlbox
If you are using Sqlbox on a supported platform, or one that is similar enough to one, compiling Sqlbox
should be trivial. After you have unpacked the source package of your choose, or after you have checked

3



Chapter 2. Installing sqlbox

out the source code from CVS, enter the following commands:

./bootstrap ./configure make

The bootstrap script uses autoconf to generate the files needed to build the module. The configure
script investigates various things on your computer for the Sqlbox compilation needs, and writes out the
Makefile used to compile the module. make then runs the commands to actually compile it.

If either command writes out an error message and stops before it finishes its job, you have a problem,
and you either need to fix it yourself, if you can, or report the problem to the Kannel project. See Chapter
4 for details.

For detailed instruction on using the configuration script, see file INSTALL . That file is a generic
documentation for configure . Sqlbox defines a few additional options:

• --with-kannel-dir= DIR Where to look for Kannel Gateway libs and header files DIR points to
the Kannel installation directory. Defaults to /usr/local

• --disable-docs (default is --enable-docs) Use this option if you don’t have DocBook
installed and/or you want to save some time and CPU cycles. Pre-generated documentation is available
on Kannel’s site. Default behavior is to build documentation, b.e., converting the User Guide from the
DocBook markup language to PostScript and HTML if DocBook is available.

• --enable-drafts (default is --disable-drafts) When building documentation, include
the sections marked as draft .

• --with-ctlib=DIR Include Ct-Lib support. DIR is the Ct-Lib install directory, defaults to
/opt/sybase.

• --with-freetds=DIR Include FreeTDS Ct-Lib support. DIR is the FreeTDS install directory,
defaults to /usr/local.

You may need to add compilations flags to configure:

CFLAGS=’-pthread’ ./configure

The above, for instance, seems to be required on FreeBSD. If you want to develop Sqlbox, you probably
want to add CFLAGS that make your compiler use warning messages. For example, for GCC:

CFLAGS=’-Wall -O2 -g’ ./configure

(You may, at your preference, use even stricter checking options.)

4



Chapter 2. Installing sqlbox

Installing Sqlbox
After you have compiled Kannel, you need to install the sqlbox binary in a suitable place. This is most
easily done by using make again:

make bindir=/path/to/directory install

Replace /path/to/directory with the pathname of the actual directory where the programs should
be installed. This install the sqlbox binary:

gw/sqlbox

Using pre-compiled binary packages
To be done

Installing Sqlbox from RPM packages
To be done

Installing Sqlbox from DEB packages
To be done

5



Chapter 3. Using sqlbox
This chapter explains how to configure and run Sqlbox and also how to tell if it’s running from Kannel’s
HTTP interface.

There is only one configuration file for Sqlbox, and that file commands all aspects of its execution.

Configuring Sqlbox
The configuration file can be divided into two parts: sqlbox configuration and database connection.

Details of each part are in appropriate sections later on this documentation.

Configuration file syntax
The syntax used for the configuration file is the same used in Kannel. Skip this section if you are already
familiar with it. Otherwise, keep on reading:

A configuration file consists of groups of configuration variables. Groups are separated by empty lines,
and each variable is defined on its own line. Each group in Sqlbox configuration is distinguished with a
group variable. Comments are lines that begin with a number sign ( # ) and are ignored (they don’t, for
example, separate groups of variables).

A variable definition line has the name of the variable, and equals sign ( = ) and the value of the variable.
The name of the variable can contain any characters except whitespace and equals. The value of the
variable is a string, with or without quotation marks ( ) around it. Quotation marks are needed if the
variable needs to begin or end with whitespace or contain special characters. Normal C escape character
syntax works inside quotation marks.

Perhaps an example will make things easier to comprehend:

01 # Sqlbox configuration
02 group = sqlbox
03 id = "my-sqlbox"
04 smsbox-id = "sqlbox"
...
11 log-level = 0
12 log-file = "/var/log/kannel/kannel-sqlbox.log"
13
14 #MySQL Connection
15 group = mysql-connection
16 id = "my-sqlbox"
17 host = localhost
...

The above snippet defines an sqlbox instance with id my-sqlbox that identifies with bearerbox as
sqlbox and also sets the log-level and file location. It also defines a MySQL connection to localhost.

Lines 1 and 14 are comment lines. Line 13 separates the two groups. The remaining lines define
variables. The group type is defined by the group variable value.

6



Chapter 3. Using sqlbox

The various variables that are understood in each type of configuration group are explained below.

Some variable values are marked as ’bool’. The value for variable can be like true, false, yes, no, on,
off, 0 or 1. Other values are treated as ’true’ while if the variable is not present at all, it is treated as being
’false’.

Inclusion of configuration files
A configuration file may contain a special directive called include to include other file or a directory
with files to the configuration processing.

This allows to segment the specific configuration groups required for several services and boxes to
different files and hence to have more control in larger setups.

Here is an example that illustrates the include statement :

group = sqlbox
id = my-sqlbox
smsbox-id = sqlbox
...
log-file = "/var/log/kannel/kannel-sqlbox.log"
log-level = 0
include = "dbconn.conf"

Above is the main sqlbox.conf configuration file that includes the following dbconn.conf file with
all required directives for the database connection.

group = mysql-connection
id = my-sqlbox
host = localhost
username = myuser
password = mypass
database = kannel

The above include statement may be defined at any point in the configuration file and at any inclusion
depth. Hence you can cascade numerous inclusions if necessary.

At process start time inclusion of configuration files breaks if either the included file can not be opened
and processed or the included file has been processed already in the stack and a recursive cycling has
been detected.

Sqlbox configuration
The configuration file MUST always include an ’sqlbox’ group for general configuration. This group
should be the first group in the configuration file.

As its simplest form, ’sqlbox’ group looks like this:

group = sqlbox
id = sqlbox
bearerbox-port = 13001

7



Chapter 3. Using sqlbox

Naturally this is usually not sufficient for any real use. Thus, one or more of the optional configuration
variables are used. In following list (as in any other similar lists), all mandatory variables are marked with
(m), while conditionally mandatory (variables which must be set in certain cases) are marked with (c) .

Table 3-1. Sqlbox Group Variables

Variable Value Description
group (m) sqlbox This is a mandatory variable

smsbox-id (m) string This is the box id.

global-sender number

If no explicit number is given,
this number is used when
sending messages.

bearerbox-host (m) host-name
This is the host where bearerbox
is running.

bearerbox-port (m) port-number
This is the port number used to
connect to bearerbox.

smsbox-port (c) port-number

This is the port number to which
the smsboxes, if any, connect.
This can be anything you want.
Must be set if you want to handle
any SMS traffic.

smsbox-port-ssl (o) bool

If set to true, the smsbox
connection module will be
SSL-enabled. Your smsboxes
will have to connect using SSL
to sqlbox then. This is used to
secure communication between
sqlbox and smsboxes in case they
are in separate networks operated
and the TCP communication is
not secured on a lower network
layer. Defaults to "no".

sql-log-table table-name

Indicates the table where
messages are copied after being
sent. Defaults to sent_sms.

sql-insert-table table-name

Indicates the table where
messages should be inserted to
sent. Defaults to send_sms.

log-file filename

A file in which to write a log.
This in addition to stdout and
any log file defined in command
line.

8



Chapter 3. Using sqlbox

Variable Value Description

log-level number 0..5

Minimum level of log-file events
logged. 0 is for ’debug’, 1 ’info’,
2 ’warning, 3 ’error’ and 4
’panic’ (see Command Line
Options)

A sample more complex ’sqlbox’ group could be something like this:

group = sqlbox
id = sqlbox-db
smsbox-id = sqlbox
#global-sender = ""
bearerbox-host = localhost
bearerbox-port = 13001
smsbox-port = 13005
smsbox-port-ssl = false
sql-log-table = sent_sms
sql-insert-table = send_sms
log-file = "/var/log/kannel/kannel-sqlbox.log"
log-level = 0

The DB Connection
sqlbox needs a connection to a supported DB engine to operate. This connection is established at
startup time and kept open until the box stops.

At the moment, sqlbox only supports MySQL and PostgreSQL, with support for other engines being
planned.

The process of configuring a DB connection is simple: You need to create a [engine]-connection
section (where [engine] is the DB engine name, either mysql or pgsql) and indicate a few parameters
needed to establish the DB connection.

Database Connection Configuration

Table 3-2. Sqlbox Database connection configuration variables

Variable Value Description

group mysql-connection

This is a mandatory variable if
we’re connecting to a MySQL
database.

group pgsql-connection

This is a mandatory variable if
we’re connecting to a
PostgreSQL database.

9



Chapter 3. Using sqlbox

Variable Value Description

id (m) string

An id to identify which external
connection should be used for
Sqlbox storage. Any string is
acceptable, but semicolon ’;’
may cause problems, so avoid it
and any other special
non-alphabet characters.

host (m) string

The hostname where the DB
engine is running.

username (m) string

The username used to connect to
the DB engine.

password (m) string

The password used to connect to
the DB engine.

database (m) string

The database name to use to
store the data.

max-connections number

Create a pool with this number
of connections open.

MySQL Storage
Uses a MySQL database to store the data. You need to specify the mysql-connection group.

Here is an example configuration:

group = mysql-connection
id = my-sqlbox
host = localhost
username = foo
password = bar
database = kannel
max-connections = 1

PostgreSQL Storage
Uses a PostgreSQL database to store the data. You need to specify the pgsql-connection group.

Here is an example configuration:

group = pgsql-connection
id = pg-sqlbox
host = localhost
username = foo
password = bar
database = kannel
max-connections = 1

10



Chapter 3. Using sqlbox

Running Sqlbox
You need to start sqlbox after starting the bearerbox, otherwise it won’t have a port open to connect
to. The preferred way to do this is to include sqlbox into your Kannel’s startup script.

Starting the box
If you want to start it from command line (for testing, for example), give the following command:

/path/to/sqlbox -v 1 [config-file]

The -v 1 sets the logging level to INFO. This way, you won’t see a large amount of debugging output
(the default is DEBUG). Full explanation of Sqlbox command line arguments is below.

[config-file] is the name of the configuration file you are using with Sqlbox. The basic distribution packet
comes with a sample configuration file you can use with some minor tweakings (check on the
/examples folder. Feel free to edit the file to suit your needs.

Of course you need to have the bearerbox running before starting the box. Without the bearer box,
sqlbox won’t even start.

Command line options
Sqlbox accept certain command line options and arguments when they are launched. These arguments
are:

Table 3-3. Sqlbox Command Line Options

-v <level>

Set verbosity level for stdout (screen) logging.
Default is 0, which means ’debug’. 1 is ’info, 2
’warning’, 3 ’error’ and 4 ’panic’--verbosity <level>

-D <places>

Set debug-places for ’debug’ level output.

--debug <places>

-F <file-name>

Log to file named file-name, too. Does not overrun
or affect any log-file defined in configuration file.

--logfile <file-name>

-V <level>

Set verbosity level for that extra log-file (default
0, which means ’debug’). Does not affect verbosity
level of the log-file defined in configuration file,
not verbosity level of the stdout output.

--fileverbosity <level>

-H

Only try to open HTTP sendsms interface; if it
fails, only warn about that, do not exit. (smsbox
only)

11



Chapter 3. Using sqlbox

--tryhttp

-g

Dump all known config groups and config keys to
stdout and exit.

--generate

-u <username>

Change process user-id to the given.

--user <username>

-p <filename>

Write process PID to the given file.

--pid-file <filename>

-d

Start process as daemon (detached from a current
shell session). Note: Process will change CWD
(Current working directory) to /, therefore you
should ensure that all paths to
binary/config/config-includes are absolute instead
of relative.

--daemonize

-P

Start watcher process. This process watch a child
process and if child process crashed will restart
them automatically.--parachute

-X <scriptname>

Execute a given shell script or binary when child
process crash detected. This option is usable only
with --parachute/-P. Script will be executed
with 2 arguments: scriptname ’processname’
’respawn-count’.

--panic-script <scriptname>

Database Tables
Sqlbox creates it’s DB tables on the fly if the tables are not present at that moment. If you’re upgrading
from a previous version, or happen to have tables with the same names as the ones Sqlbox uses, but
having a different structure, this will probably cause problems and there’s a good chance the process will
panic and stop. In that case, rename/drop the offending tables or change the names Sqlbox uses by using
the sql-log-table and sql-insert-table variables.

Inserting MT messages by SQL
One of the nice features Sqlbox provides is the ability to insert MT messages into Kannel’s queue by
inserting rows into the send_sms table. Keep in mind that both tables have the same schema, but you

12



Chapter 3. Using sqlbox

only need to care about send_sms. Sqlbox will move messages to the sent_sms table autmatically after
processing it.

Database Structure
The tables structure is as follows:

Table 3-4. Sqlbox Database structure

Value Type Description sendsms equivalent

sql_id BIGINT(20)

This is the
auto-incremented
PRIMARY KEY and
should be always left
alone. Set it to NULL or
do not include it in your
INSERT query. -

momt ENUM(’MO’, ’MT’)

Specifies if the message
is either MO or MT. You
should always use "MT"
here. -

sender VARCHAR(20)

Phone number of the
sender. If this variable is
not set, sqlbox
global-sender is
used. from

receiver VARCHAR(20)

Phone number of the
receiver. to

msgdata TEXT

Contents of the
message, URL encoded
as necessary. The
content can be more
than 160 characters, but
then Kannel’s
sendsms-user group
must have
max-messages set
more than 1. text

udhdata BLOB

Optional User Data
Header (UDH) part of
the message. Must be
URL encoded. udh

13



Chapter 3. Using sqlbox

time BIGINT(20)

An integer timestamp.
You can uses
UNIX_TIMESTAMP()
on MySQL or any
similar function here.
You can also leave the
field empty/alone if you
don’t care about having
a timestamp on your
messages. -

smsc_id VARCHAR(255)

Optional virtual
smsc-id from which the
message is supposed to
have arrived. This is
used for routing
purposes, if any denied
or preferred SMS
centers are set up in
SMS center
configuration. This
variable can be
overridden on Kannel
with a forced-smsc
configuration variable.
Likewise, the
default-smsc

variable can be used to
set the SMSC if it is not
set otherwise. smsc

service VARCHAR(255)

Optional. Service name
from which the message
is supposed to have
arrived. This field is
logged as SVC in the
log file so it allows you
to do some accounting
on it if your front end
uses the same username
for all services but
wants to distinguish
them in the log. smsc

14



Chapter 3. Using sqlbox

account VARCHAR(255)

Optional. Account
name or number to carry
forward for billing
purposes. This field is
logged as ACT in the
log file so it allows you
to do some accounting
on it if your front end
uses the same username
for all services but
wants to distinguish
them in the log. In the
case of a HTTP SMSC
type the account name is
prepended with the
service-name
(username) and a colon
(:) and forwarded to the
next instance of Kannel.
This allows hierarchical
accounting. account

id BIGINT(20)

Kannel’s internal
message identifier. This
have no meaning when
you’re inserting your
own messages, since
Kannel doesn’t have an
identifier on your
message yet. Leave it
alone. -

sms_type BIGINT(20)

A numeric value
indicating if it’s an MO,
MT or DLR message.
ALWAYS INSERT A
"2" HERE (Meaning:
MT), OTHERWISE
KANNEL’S QUEUE
WILL GET
CORRUPTED IF YOU
RESTART IT AND
YOU HAVE PENDING
MESSAGES. -

15



Chapter 3. Using sqlbox

mclass BIGINT(20)

Optional. Sets the
Message Class in DCS
field. Accepts values
between 0 and 3, for
Message Class 0 to 3, A
value of 0 sends the
message directly to
display, 1 sends to
mobile, 2 to SIM and 3
to SIM toolkit. mclass

mwi BIGINT(20)

Optional. Sets Message
Waiting Indicator bits in
DCS field. If given, the
message will be
encoded as a Message
Waiting Indicator. The
accepted values are
0,1,2 and 3 for
activating the voice, fax,
email and other
indicator, or 4,5,6,7 for
deactivating,
respectively. a mwi

coding BIGINT(20)

Optional. Sets the
coding scheme bits in
DCS field. Accepts
values 0 to 2, for 7bit,
8bit or UCS-2. If unset,
defaults to 7 bits unless
a udh is defined, which
sets coding to 8bits. coding

compress BIGINT(20)

Optional. Sets the
Compression bit in DCS
Field. compress

16



Chapter 3. Using sqlbox

validity BIGINT(20)

Optional. If given,
Kannel will inform SMS
Center that it should
only try to send the
message for this many
minutes. If the
destination mobile is off
other situation that it
cannot receive the sms,
the smsc discards the
message. Note: you
must have your Kannel
box time synchronized
with the SMS Center. validity

deferred BIGINT(20)

Optional. If given, the
SMS center will
postpone the message to
be delivered at now plus
this many minutes.
Note: you must have
your Kannel box time
synchronized with the
SMS Center. deferred

dlr-mask BIGINT(20)

Optional. Request for
delivery reports with the
state of the sent
message. The value is a
bit mask composed of:
1: Delivered to phone, 2:
Non-Delivered to
Phone, 4: Queued on
SMSC, 8: Delivered to
SMSC, 16:
Non-Delivered to
SMSC. Must set
dlr-url on
sendsms-user group
or use the sendsms
dlr-url variable or
Sqlbox column. dlr-mask

dlr-url VARCHAR(255)

Optional. If dlr-mask
is given, this is the url to
be fetched. (Must be
url-encoded) dlr-url

17



Chapter 3. Using sqlbox

pid BIGINT(20)

Optional. Sets the PID
value. (See ETSI
Documentation). Ex:
SIM Toolkit messages
would use something
like pid=127,
coding=1,

alt-dcs=1,

mclass=3 pid

alt-dcs BIGINT(20)

Optional. If unset,
Kannel uses the alt-dcs
defined on smsc
configuration, or 0X per
default. If equals to 1,
uses FX. If equals to 0,
force 0X. alt-dcs

rpi BIGINT(20)

Optional. Sets the
Return Path Indicator
(RPI) value. (See ETSI
Documentation). rpi

charset VARCHAR(255)

Charset of text
message. Used to
convert to a format
suitable for 7 bits or to
UCS-2. Defaults to
WINDOWS-1252 if
coding is 7bits and
UTF-16BE if coding is
UCS-2. charset

boxc_id VARCHAR(255)

The bearerbox ID that
should handle this
message. You can
usually leave this one
alone. charset

18



Chapter 3. Using sqlbox

binfo VARCHAR(255)

Optional. Billing
identifier/information
proxy field used to pass
arbitrary billing
transaction IDs or
information to the
specific SMSC modules.
For EMI2 this is
encapsulated into the
XSer 0c field, for SMPP
this is encapsulated into
the service_type of the
submit_sm PDU. binfo

Notes:
a. To set number of messages, use
mwi=[0-3]&coding=0&udh=%04%01%02%<XX>%<YY>, where YY are
the number of messages, in HEX, and XX are mwi plus 0xC0 if text field is
not empty.

Example
As when you’re using the sendsms interface, you don’t need to specify all the columns in order to
succesfully enqueue a message.

Here’s an example query you can use to send a simple message using Sqlbox:

INSERT INTO send_sms (
momt, sender, receiver, msgdata, sms_type

) VALUES (
’MT’, ’1234’, ’1234567890’, ’Hello world’, 2

);

The former example would send a message with text "Hello world" to number "1234567890". If
possible, the sender would be set to "1234".

You can add other parameters to specify routing, charset encoding and any other settings your setup may
require. Just remember, try to keep it simple whenever possible

19



Chapter 4. Getting help and reporting bugs
This chapter explains where to find help with problems related to the gateway, and the preferred
procedure for reporting bugs and sending corrections to them.

The Kannel development mailing list is devel@kannel.org. To subscribe, send mail to
devel-subscribe@kannel.org (mailto:devel-subscribe@kannel.org). This is currently the best location for
asking help and reporting bugs. Please include configuration file and version number.

20



Appendix A. Upgrading notes
This appendix includes pertinent information about required changes on upgrades.

As a general rule, always check the ChangeLog file before upgrading, because it may contain important
information worth knowing before making any changes.

Upgrading from different sqlbox versions
Sqlbox is a simple module that usually upgrades easily and without requiring any other changes.

In some cases, a change on the DB structure takes place and this requires changes on the DB schemas as
well. Since sqlbox automatically generates its tables, the best approach for this kind of upgrades is to
make sure that there’s no messages pending, backup the tables contents (if there’s no messages pending
only the sent_sms table will have records), drop the tables and let sqlbox create the tables again.
Alternatively you can check what changes are necessary and ALTER the tables yourself.

21


	sqlbox cvs2008.11.03 User's Guide
	Table of Contents
	List of Tables
	Chapter 1. Introduction
	Overview
	Features
	Requirements

	Chapter 2. Installing sqlbox
	Getting the source code
	Finding the documentation
	Compiling sqlbox
	Installing Sqlbox
	Using precompiled binary packages
	Installing Sqlbox from RPM packages
	Installing Sqlbox from DEB packages


	Chapter 3. Using sqlbox
	Configuring Sqlbox
	Configuration file syntax
	Inclusion of configuration files
	Sqlbox configuration

	The DB Connection
	Database Connection Configuration
	MySQL Storage
	PostgreSQL Storage

	Running Sqlbox
	Starting the box
	Command line options
	Database Tables

	Inserting MT messages by SQL
	Database Structure
	Example


	Chapter 4. Getting help and reporting bugs
	Appendix A. Upgrading notes
	Upgrading from different sqlbox versions


